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Abstract. Although graph neural network (GNN) has shown its
superiority in many graph tasks, its limited ability to distinguish au-
tomorphic nodes (those sharing identical structural roles) poses chal-
lenges, potentially resulting in poor link prediction performance. Ex-
isting methods focus on designing robust GNN encoders that apply
node labeling tricks or restrict computation to subgraphs enclosing
a link, thus converting the link prediction task into binary subgraph
classification. However, the importance of the decoder, which maps
the node pair representations to predictions, has been largely over-
looked in predicting links on a graph. In this paper, we propose
a universal framework named DBLP (Decoder Boosting for Link
Prediction), which focuses on solving the automorphic problems
in link prediction by boosting the decoder. We show that a simple
graph encoder embedded in DBLP can have similar or better perfor-
mance compared to advanced baselines. DBLP reveals the potential
of GNNs in link prediction tasks by exploiting a better decoder. Ex-
tensive experiment results show the universality and the effectiveness
of our framework.

1 Introduction

Graph Neural Networks (GNNs) have demonstrated their superior
ability in various graph learning tasks like node classification, graph
classification, link prediction, etc. [26, 14, 42, 43, 47, 17]. Among
these tasks, link prediction (i.e. predicting whether two nodes in a
network are likely to have a link) is one of the most important due
to its wide applications in practice [49], including recommender sys-
tems [17, 46], knowledge graphs [29], social networks [15], drug
target interaction [34], and biological networks [31]. GNNs can learn
node representations via the message passing mechanism [42], which
effectively incorporates graph topology and node or edge features
and is a main reason behind the great success of GNNs in link pre-
diction.

Although GNNs represent a powerful learning framework, they
still suffer from a widely-discussed intrinsic problem [36, 8, 48, 49],
which is referred to as the automorphic node problem [8]. To gen-
erate the link representation, GNNs learn permutation-equivariant
structural node representations [30, 36] and use a readout function
that maps from the representations of two nodes to the probability of
existing a link between the two nodes. As a result, all nodes having
identical structural roles induced by the graph automorphism group
will have equal representations. If two nodes belong to different clus-
ters while their topological environments are the same, the predictor
may assert there will be a link between them which is not the case.
The automorphic problem limits the prediction power of GNNs [8].
A detailed explanation of the automorphic problem and the concept

comparison between automorphism and isomorphism are shown in
Appendix A.

To solve the aforementioned problem, current methods focus on
designing robust GNNs that apply node labeling tricks [48, 49] or re-
strict computation to subgraphs enclosing a link, thereby transform-
ing the link prediction into the binary subgraph classification [45, 5].
However, as an important part of link prediction, the utility of the
decoder, which maps the representation of the node pair to the result,
was largely ignored in link prediction tasks. Since a key to relieving
the problem is to specialize the nodes that are in the same topological
environment, we add a special mark (denoted by t), which is a binary
variable, to the edge whose two nodes are in the same topological
environment (i.e. t will be 1 in this case and 0 otherwise). Then the
decoder will predict the edge whose t = 1 with new parameters. In
this way, the nodes that are in the same topological environment will
be treated differently because it use separate parameters for the spe-
cial pairs. We will show that such a simple modification can greatly
improve the performance on different real-world datasets.

Despite the improved expressiveness in many datasets, when the
marks are selected based on the observational node representations,
a main challenge in working with the imbalanced marks distribution
p(t), unlike in randomized cases (i.e. when the marks are indepen-
dent of the embeddings derived from GNNs), is that edges with dif-
ferent marks can not be assumed equivalent This is because marks
are selected based on whether the two nodes are in the same topolog-
ical environment, which is presented by a distribution shift between
p(Z|t = 1) and p(Z|t = 0) [22]. A visual example is demonstrated
in Appendix B. If not adjusted for, this imbalance may result in in-
flated variance in the estimation of potential outcomes [33, 50]. A
widely-used method is to use re-weighting tricks to obtain an unbi-
ased estimation of the risk from an empirical sample [35, 9]. How-
ever, instead of learning directly from the original features, our de-
coder learns from the embeddings learned by GNNs. Inspired by the
balancing techniques on representation learning [21, 2], we seek a
balancing weights decoder for link prediction that is both predictive
of potential outcomes and balanced across different marks.

In the paper, we propose DBLP (Decoder Boosting for Link
Prediction), a universal framework, which can be used by most
GNNs for link prediction. In DBLP, we do not modify the GNN ar-
chitecture for embedding learning, instead, the difference between
DBLP and other frameworks lies in how to utilize the embeddings
learned by GNNs. Particularly, we focus on the automorphism prob-
lem in the embeddings learned by GNNs and try to find an efficient
solution from the utilization of the embeddings compared to most
works that develop a new GNN network to learn better embeddings.

Our contributions can be summarized as follows:



• It is the first time to focus on the utility of the decoders for link pre-
diction and our study demonstrates that purposeful enhancement
of the decoder will lead to much better performance of prediction.
We propose a universal framework, DBLP, which improves the
performance of most GNNs.

• We show that a simple graph encoder embedded in DBLP can
have similar or better performance compared to advanced base-
lines. DBLP reveals the potential of GNNs in link prediction tasks
by exploiting a better decoder.

2 Related Work

2.1 Graph automorphism problem

Link prediction is the task of predicting future relationships between
entities or identifying missing connections within a dynamic net-
work. Although GNNs represent a powerful learning framework,
they still suffer from a widely-discussed intrinsic problem [36],
which is referred to as automorphic node problem [8]. Various meth-
ods have been proposed to relieve this problem. Some use node la-
beling tricks [48, 47, 49], which assign labels to different nodes such
that nodes in the same topological environment will have different
representations, leading to correct prediction. Some restrict compu-
tation to subgraphs enclosing a link, transforming link prediction into
binary subgraph classification [49, 45, 5]. Compared to the methods
that design complex GNNs, we try to exploit the potential impact of
the decoder, which has been greatly ignored.

2.2 Balancing weights and causal reasoning

The goal of balancing weight estimators is to alleviate systematic
differences in baseline covariates across treatment groups, aiming to
improve the individual treatment effect, because the imbalance may
result in inflated variance in the estimation of potential outcomes.
[24]. Currently, many works try to construct re-weighting estimators
that explicitly minimizing the discrepancy between two groups [2,
4, 6]. They rely on assigning a prior to the data representation and
seek a hypothesis that is both predictive of potential outcomes and
balanced across different groups [1].

A work similar to ours is CFLP [51]. They estimated counter-
factual links on a graph and proposed CFLP, a framework trained
with counterfactually augmented data aiming to learn representations
of the causal structure of tasks. Although we have similar marking
strategies (treatment in CFLP) and optimization targets, our work is
distinguished from CFLP in the following aspects. First, we differ
in motivation. CFLP augments the graph encoder with the additional
estimated counterfactual data. By contrast, our work aims to solve
the automorphism problem in link prediction with imbalanced dis-
tribution via the decoder enhancement. Secondly, although we have
similar training objectives with CFLP, the targets to balance are dif-
ferent. CFLP tries to balance the distributions between the factual
data and the estimated counterfactual data, whereas we are balanc-
ing the data units across different mark groups, which are all factual.
Thirdly, CFLP uses similarity-based estimation to obtain the coun-
terfactual data points, which is a slow process with a time complexity
of O(N4). Our algorithm does not need the counterfactual data and
thus saves the time for the estimation. As a result, DBLP runs much
faster.

3 Problem Definition and Notation

We will use the following problem definition and notations to pro-
pose our method. Let G = (V, E) be an undirected graph , where
V = {vi : i ∈ [n]} is the set of n nodes and E ⊆ V × V is the set
of edges. We denote the adjacency matrix as A and the node feature
matrix as X ∈ Rn×d, where d is the dimension of feature embed-
dings. A graph neural network typically takes (A,X) as input, and
tries to learn an encoder Φ : Rd → Rh, which transforms the origi-
nal node feature space to the representation space. And We will use
Z = Φ(X) and an additional discriminator h : R2h → {0, 1} over
the edge representation (concatenation of the related embeddings of
(Zvi ,Zvj ) : i ∈ [n], j ∈ [n]) to give out the result whether there is
a link between the node pair (vi, vj).

To introduce the link prediction task with enhancement on the
decoder, we need some extra notations and assumptions follow-
ing [33]. Let the space of edge representation be a bounded subset
X ⊂ (Rd × Rd) and the outcome space be Y ⊂ R. We assume that
for a unit with features x ∈ X and the edge-marking t ∈ {0, 1} (we
will detail introduce how to construct the mark in the next section),
there are two potential outcomes: y = Y0 and y = Y1. For each data
point, we are able to get one of the potential outcomes, depending on
the assignment of the edge marking t: if t = 0 we observe y = Y0, if
t = 1, we observe y = Y1; this is known as the consistency assump-
tion.

Furthermore, we will adopt a commonly accepted important “no-
hidden confounders” assumption. We formalize the assumption by
using the ignorability and overlap [20, 32]:

∀t ∈ {0, 1} : Y (t)T | Φ(X)︸ ︷︷ ︸
Ignorability

and

∀z ∈ Z : p(T = t | Φ(X) = z) > 0︸ ︷︷ ︸
Overlap

Then we could assume that there exists a joint distribution
D (x, t, Y0, Y1) which satisfies the above assumptions. Let Φ : X →
Rh be a representation function (with a slight abuse of notation), and
h : Rh × {0, 1} → R be a hypothesis over the representation space
Rh. And denote L : Y × Y → R as a loss function. We will define
the risk of the hypothesis h(x, t)

Definition 1. The expected point-wise loss for the data pair (x, t)
is given by:

ℓh,Φ(x, t) = EY (t)|X [L (Yt, h(Φ(x), t)) |X] (1)

Definition 2. Let the expected loss for a single data unit be
ℓh,Φ(x, t). Then we can derive the marginal risk ϵ(h,Φ) of a hy-
pothesis w.r.t a population p(X) and the group risk ϵt(h,Φ) w.r.t
p(X|T = t):

ϵ(h,Φ) = EX [ℓh,Φ(x, t)] (2)

ϵt(h,Φ) = EX|T [ℓh,Φ(x, t)|T = t] (3)

Furthermore, our framework relies on Integral Probability Metric
(IPM), which is a class of metrics between probability distributions
[11, 12]:

Definition 3. For a function family G of functions g : S → R, we
have that

IPMG(p, q) = sup
g∈G

∣∣∣∣∫
S
g(s)(p(s)− q(s))ds

∣∣∣∣ (4)



Unlike KL-divergence, IPM is a symmetric metric that obeys the tri-
angle inequality. Also, it is monotone, which means the higher the
similarity of the two distributions, the smaller the values IPM will
output [37].

4 Method
In this section, we will describe our model in two parts. First, we
will introduce a novel and simple framework for link prediction that
takes the automorphic node pairs into account. Second, we introduce
a balancing weights estimator which alleviates the covariant imbal-
ance problems in training.

4.1 Jointly training framework

Due to the automorphism problem [36, 8], graph neural networks
may perform poorly in the cases shown in the previous section. Be-
cause GNN will assign the same color to the nodes whose topological
environments are the same [36], it will assert there will exist a link
between node 1 and node 2 which is obviously unreasonable (Figure.
1). In this part, we will introduce additional marks on node pairs and
enhance the decoder to solve the problem.

Weisfeiler-Lehman test and marking The classical Weisfeiler-
Lehman (WL) algorithm [41], a graph-isomorphism test based on
color refinement, became relevant to the study of graph neural net-
works [42] in recent years. The first-order WL test [41, 19], keeps
a state for each node that is updated by aggregating their neighbors’
color. In this process, two nodes will be given the same color if their
topological environments are the same, which satisfies the definition
of automorphic nodes. Because of the equivalence between the WL
test and message-passing-based GNNs, the two nodes that have the
same color can be regarded as error-prone pairs in link prediction
using GNNs.

Formally speaking, for the given graph G = (V, E), we conduct
the previous WL test in the training graph and get the embeddings
(c(vi), c(vj)) for all the node pairs (vi, vj). The mark tij will be
calculated by ⊮(c(vi), c(vj)). The idea of the introduction of the
mark is: since we know that the GNNs will perform poorly in the
automorphic nodes, we exploit the power of the decoder to deal with
this problem by setting separate parameters for the harder case.

In this way, we are able to use a new hypothesis h(Φ(x), t) instead
of the original h(Φ(x)) and take the parameter isolation strategy. If
the hypothesis is a multi-layer perception (MLP), the parameter iso-
lation means h(Φ(x), 1) and h(Φ(x), 0) will be outputted from two
different heads of a shared MLP layer. However, we observed a se-
vere distribution imbalance between distribution p(t = 1) and distri-
bution p(t = 0) in widely used real-world datsets. The imbalance is
no surprise because the number of automorphic node pairs is much
smaller than the non-automorphic node pairs, or GNNs will not get
satisfactory results due to their limitation. If not adjusted for, this
imbalance may result in inflated variance in estimates of potential
outcomes [33, 22]. In the next part, we will deal with this imbalance.

4.2 Preventing distribution shift

Since the edge representation X and the edge marking T are con-
founders, the result Y (t) is only accessible for edges that are dis-
tributed according to p(X|T = t). As a result, unless marks are
independent of the embeddings derived from GNNs, ϵ(h,Φ) is dif-
ferent from ϵt(h,Φ) in general [23]. The optimal hypothesis h for
ϵt(h,Φ) can be different from an optimal hypothesis for ϵ(h,Φ),

leading to inflated variance in estimates of potential outcomes [35].
To reduce the bias, a widely used method is to use re-weighting tricks
to obtain an unbiased estimate of the risk from an empirical sample
[35, 9]. The re-weighted marginal risk and re-weighted group risk
are defined as follows,

ϵw(h,Φ) = EX [w(X)ℓh,Φ(x, t)] (5)

ϵwt (h,Φ) = EX|T [w(X)ℓh,Φ(x, t)|T = t] (6)

where w(X) is a parameter to balance the marks and [3] introduces
some principles to chose w(X). Suppose πt = p(T = t), the error
gap between the vanilla estimator and the re-weighted estimator is
bounded by [10]:

ϵ(h,Φ) = ϵŵt (h,Φ) + (1− πt)

∫
X
ℓh,Φ(x, t)(p1−t(x)

− pwt (x))dx (7)

≤ ϵŵt (h,Φ) + C(1− πt)IPML(p1−t(x), p
w
t (x)) (8)

where ŵ = πt + (1 − πt)w(x), C is a constant, L is the assump-
tion for the risk function family. One can minimize the upper bound
for the marginal risk to ensure the performance. However, instead
of learning directly from the original features, our hypothesis learns
from the embeddings learned by GNNs. Inspired by the balancing
techniques on representation learning [21, 2], we derive a bound sim-
ilar to the above when we learn from the low-dimension GNN em-
beddings Φ(X).

Lemma 1 Let Φ : X → Rh be an invertible representation with
Ψ as its inverse. Let G be a family of functions g : Rh → R, and
denote by IPMG(·, ·) the integral probability metric induced by G.
Assume there exists a constant BΦ > 0, such that for t = 0, 1, the
function g(Φ, h, r, t) := 1

BΦ
· ℓh,Φ(Ψ(r), t) ∈ G. Then we have:∫

X
ℓh,Φ(x, t)(p1−t(x)− pwt (x))dx

≤ BΦIPMG(pΦ,1−t(x), p
w
t,Φ(x)) (9)

Proof of Lemma 1 will be shown in Appendix. The intuition of the
proof is to use the change of variable to transform the calculation on
original features into the embeddings learned by GNNs. In this way,
the marginal risk is bounded by:

ϵ(h,Φ) ≤ ϵŵt (h,Φ) +BΦ(1− πt)IPMG(pΦ,1−t(x), p
w
t,Φ(x))

(10)

The proof is left in the Appendix.

5 Algorithm for link prediction
We propose a simple yet effective framework DBLP (Decoder
Boosting for Link Prediction) based on the above analysis. The in-
put of DBLP is a graph G = (V, E ,X), and the output is the logit of
link prediction in G. The model consists of three parts: node label-
ing, graph encoder, and edge predictor. For node labeling, we mark
every node pair according to the principle described in the previous
part. And since DBLP is a universal framework for link prediction,
the graph encoder Φ can be any GNN model. Here we use the most
popular graph neural network GCN [26], and in each layer, it follows
that:

m
(k)
ij =

1√
|Ni||Nj |

(W (k−1)h
(k−1)
i ))

h
(k)
i = ReLU(W ·MEAN(h

(k−1)
i ,

∑
j∈N (i)

mij))



Figure 1. DBLP framework: Leverage the WL-test outcomes to assign colors to node pairs, and term them as T labels. Employ the dual-head MLP
designated for T=0 and T=1 labels as the decoder for the graph neural networks during the link prediction task. The loss function comprises two distinct binary

cross-entropy losses and an IPM loss, where the IPM loss is implemented to address the distribution shift.

where h
(k)
i ∈ H(K) and H(1) = X, MEAN is the element-wise

mean pooling and ReLU is the nonlinear activation function.
In the third part, we set up a two-head MLP with a shared layer to

implement the parameter isolation strategy. Given an embedding X
learned by GNNs and the corresponding mark t, if t = 1, we use the
first head to predict the logit and use the other if the mark is zero.

Training During the training of DBLP, we will seek an encoder Φ
and h by optimizing the following objective:

min
h,Φ

1

n

n∑
i=1

L(h(Φ(xi), ti), yi) + λ∥W∥2+

α IPMG ({Φ(xi) : ti = 0}, {Φ(xj) : tj = 1})

where ∥W∥ is the L2 regularization term and α, λ are the hyper-
parameters. Note that for most IPMs, we cannot compute the factor
BΦ in Equation 10, but we can treat it as part of the hyperparameter
α. Also, we only sample part of the representations instead of all the
representations to estimate IPM for the sake of efficiency. We train
our models by minimizing the objective above using Adam [25] with
a zig-zag learning rate scheduler, where we backpropagate the error
through both the hypothesis and representation networks.

6 Experiment

In this section, we first describe the experimental setup. Then we
show the performance of DBLP, followed by a comparative study
and ablation studies. We focus on several topics: 1) How does the
proposed framework perform if we adopt it to popular baselines?
And how does our method fare against the more advanced models in
link prediction tasks? 2) What is the effect of using the edge marking
strategy? Do we relieve the node automorphic problem? 3) What is
the effect of the balancing weight estimator? How does the proposed
estimator influence the distribution of the edge embeddings?

6.1 Experiment setup

Dataset In this study, we use the benchmark datasets including cita-
tion networks CiteSeer, Pubmed [44], social networks Facebook[28],
and biological networks including drug-target interaction (DTI) net-
work KIBA [38] and standard drug-drug interaction OGB-DDI net-
work [18]. We randomly select 70%/10% of the node pairs as train-
ing/validation samples and the remaining 20% as test samples. And
the links in the validation and test sets are masked from the training
graph. For OGB-DDI dataset, we follow the official setup reported in
[18]. All the datasets used in this work are publicly available. Further
information on the datasets is listed in the Appendix (table D.1).

Metric We use Hit@20 and Hit@50 as the evaluation metrics for
the model, where Hit@k is a performance metric that measures the
percentage of relevant items successfully retrieved within the top k
candidates suggested by the algorithm [18]. The results are average
with deviation over 10 runs with different parameter initialization.

Baseline methods We compared our model with several recently
proposed baseline methods for link prediction tasks. These methods
include the position embedding methods Node2Vec [13], GNN-based
methods GCN [26], SAGE [14], GAT, [40] VGAE [27], JKNet [43]),
and other models designed for the node automorphic problems SEAL
[48], and LGLP [7]. Also, we compare our model with CFLP [51]
which has similar optimization targets to us.

Implement details We show the hyperparameter settings and
other implement details for each dataset in the Appendix. To ensure
the fairness and consistency of the experiment, some of the results
are referenced from OGB-leaderboard [18]. We trained and tested
our model on 1 NVIDIA V100 GPU.

6.2 Experiment results

Link prediction performance In this section, we report the perfor-
mance of DBLP in two aspects: Firstly, we aim to ascertain DBLP’s
universality by comparing the performance of the most popular graph
encoders with and without the DBLP framework, assessing its adapt-
ability to most GNNs. Secondly, we report the performance com-



Table 1. Performance comparison of DBLP with baselines under metric Hit@20. The best performance is marked in bold and underlined, respectively.

OGB-DDI CiteSeer PubMed Facebook KIBA

Node2Vec 23.26±2.09 47.78±1.72 39.19±1.02 24.24±3.02 59.03±1.94
VGAE 11.71±1.96 44.04±4.86 23.73±1.61 37.01±0.63 48.38±0.58
SEAL 30.56±3.86 40.90±3.68 28.45±3.81 40.89±5.70 59.70±1.18
LGLP - 57.43±3.71 37.86±2.13 56.07±4.09
CFLP 86.08±1.98 68.09±1.49 44.90±2.00 55.22±1.29 60.94±1.56

GCN 37.07±5.07 55.56±1.32 21.84±3.87 53.89±2.14 51.71±1.91
GCN-DBLP 58.45±01.03 62.45±2.69 39.42±1.52 51.06±2.71 59.04±1.36

SAGE 53.90±4.74 53.67±2.94 39.13±4.41 45.51±3.22 52.53±2.69
SAGE-DBLP 72.67±00.51 62.64±1.17 40.48±3.27 53.01±2.87 59.50±2.17

GIN 64.00±0.42 30.84±7.33 18.95±4.63 39.24±1.95 54.20±4.07
GIN-DBLP 70.11±0.35 39.16±3.05 23.44±2.21 40.32±0.56 44.59±0.48

GAT 46.85±3.28 36.08±7.38 15.59±2.85 27.36±1.49 11.36±0.76
GAT-DBLP 34.09±1.79 54.14±1.75 13.15±4.47 21.68±04.03 25.99±13.53

JKNet 60.56±8.69 55.60±2.17 25.64±4.11 52.25±1.48 55.21±0.32
JKNet-DBLP 87.83±1.44 72.45±1.11 43.96±4.14 56.63±1.65 61.11±0.08

Figure 2. We first sample the 200 node pairs with mark 1 and mark 0 on the DDI dataset. Then we extract the original edge features, edge embeddings
learned by vanilla GNNs, and edge embeddings learned by DBLP and use t-SNE to project the above embeddings into two dimensions (edge embeddings are

derived by point-wise product of the two nodes embeddings).

parison with other advanced baselines. We show the effectiveness of
using DBLP in solving the link prediction problem.

We follow the implementation provided by OGB [18] as baselines
and embed them in DBLP. We used Hit@20 and Hit@50 as eval-
uation metrics, and the average results from five experiments were
taken as the outcomes. The Hit@20 results are presented in Table 1.
Additional results are shown in Appendix Table 4. LGLP on Pubmed
and OGB-DDI is missing due to the out-of-memory (OOM) error.
With DBLP embedded, the simple GNNs can have better perfor-
mance than their original versions in most of the datasets. JKNet
shows the best compatibility with DBLP and outperforms all base-
lines. One exception is Hit@20 in the PubMed dataset. However, we
have better performance on a more challenging Hit@50 task.

For one thing, the results indicate that the performance of almost
all GNNs is significantly improved by incorporating DBLP, which
shows the universality of DBLP. For another, We show that a sim- ple
graph encoder embedded in DBLP can have similar or better perfor-
mance compared to advanced baselines. DBLP reveals the potential
of GNNs in link prediction tasks by exploiting a better decoder.

Effect of edge marking Since we propose the edge marking strat-
egy aiming to solve the node automorphic problem, we conduct ex-
periments to show to which extent DBLP could relieve this intrinsic
problem in GNNs. In Figure 3, we illustrate the result of the predic-
tion on the test set whose marks are all 1, i.e., the set of all the error-
prone node pairs. The results show that DBLP could better handle

these edges than the baselines. The full results will be included in
the Appendix Figure 5. Furthermore, to show marking edges in the
proposed way is good enough, we conduct an ablation study using
different mark strategies. This experiment result supports our orig-
inal motivation that relieving the node automorphic problem is the
key to having better performance in link prediction tasks.

Figure 3. Accuracy results of tests performed on T=1 (normal) and T=0
(error-prone) edge datasets, respectively

Effect of the balancing weight estimator Since we observed dis-



tribution shift in all the datasets and existing works [33, 22] point
out that the shift might lead to the inflated variance of potential out-
comes, we conducted several experiments to show the effect of the
proposed balancing weight estimator. First, we show the effect on the
learned embeddings. We first sample the 200 node pairs with mark
1 and mark 0. Then we extract the original edge features (Figure 2-
left), edge embeddings learned by vanilla GNNs (Figure 2-mid), and
edge embeddings learned by DBLP (Figure 2-right) and use t-SNE
[39] to project the above embeddings into two dimensions (edge em-
beddings are derived by point-wise product of the two nodes em-
beddings). We find several interesting results. The results of other
datasets are in the Appendix.

First, we find out that with vanilla GNNs, the embeddings of error-
prone node pairs (node pairs with mark 1) are scattered in space while
the node pairs with mark 0 clusters. As we stated in the introduction
when marks are selected based on whether the two nodes are in the
same topological environment, this is presented by a distribution shift
between p(Z|t = 1) and p(Z|t = 0). We find the error-prone edges
distributed differently from the common edges, so it is hard to have
a consistent hypothesis for a population consisting of different dis-
tributions. With balancing weight estimators, two distributions "look
similar", then we can better fit the hypothesis using risk minimiza-
tion. Second, we conducted an ablation study of w/o the balancing
term IPM and illustrated the results in Table 2. The results show the
effect of using the balancing weight estimator compared to the esti-
mator w/o balance.

Table 2. Performance comparison on different dataset under without IPM
and with IPM Scenario under metric Hit@20

Dataset W/o IPM With IPM
OGB-DDI 87.66±1.70 87.83±1.44
Citeseer 70.25±0.55 72.45±1.11
Pubmed 42.34±1.73 43.96±4.14

Facebook 53.83±2.01 56.63±1.65
KIBA 61.05±0.77 61.11±0.80

7 Conclusion

In this work, we proposed a simple yet effective framework named
DBLP (Decoder Boosting for Link Prediction). We focused on the
node automorphic problem in GNNs and tried to solve it via the de-
sign of the decoder for a GNN, whose utility is largely ignored by
the community. To this end, we proposed the edge marking strategy
and balancing weight estimator to enhance the decoder. As a univer-
sal framework, extensive experiments demonstrated that DBLP can
adapt to different graph encoders and outperform baselines on bench-
mark datasets. Also, we analyzed the effect of using the edge mark-
ing strategy and the effect of the balancing weight estimator. This
work suggests that an effective decoder with even a simple graph en-
coder can greatly improve the performance of graph learning tasks
such as link prediction. We note that the difference in distributions of
edge representations with different marks leads to poor performance
in automorphic problems. Therefore, the use of more sophistically
designed balancing weight decoders can lead to larger improvements
in link prediction tasks, which can be a valuable future direction for
the GNN community.
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A Graph automorphic problem

In this section, we will illustrate the drawback of using graph neural networks in link prediction tasks mainly following the analysis in [36, 8].
To learn from a graph, we first need to learn the representations of each node. The structural representation of a node (learned by GNN) [26, 14]
shows which nodes have similar roles (structural similarities) on a graph. If two nodes share the same representations, they are often seen as
having similar effects in the graph. GNNs learn the representations via the relative relationship of nodes, and this kind of representation is
permutation equivariance [42]. Therefore, the link probability p(u, v) is the same for all u in the same topological environment. This is the
result of GNN’s built-in permutation equivariance.

In this paragraph, we distinguish the concepts of isomorphism and automorphism. Graph isomorphism refers to the situation where two
graphs are structurally identical, meaning there exists a bijective mapping (a one-to-one correspondence) between their nodes that preserves
the edge relationships. Graph automorphism, on the other hand, involves a mapping from a graph to itself, such that the graph remains
unchanged. In other words, an automorphism is an isomorphism from a graph to itself. If a graph has nodes A, B, C, and D, and there is
an automorphism, it becomes possible to reassign labels to these nodes in a manner that preserves the overall structure of the graph. While
isomorphism compares two different graphs to check if they are structurally the same, automorphism looks at symmetries within a single
graph. And our paper focuses on the challenges brought by automorphic nodes in a graph.

B Distribution Shift in Embeddings

To demonstrate the distribution shift led by the confounder, we show a simple linear example. In Figure 4-mid, points represent the data
sampled from a linear model. The color (blue and red) means that the points are divided into two different groups according to some features.
Given the points, we will do the estimation of the two groups. The regression results are shown in Figure 4-right. Red/Blue solid indicates the
mean value of the output in a single group. However, we observe that the mean value of each group is shifted from the original linear model
that generates the data points. As a result, if not adjusted for, this shift may result in inflated variance in the estimation of potential outcomes.

Figure 4. Left: The effect of the confounder. Z is the link representation obtained from vanilla GNNs, T is the indicator of whether two nodes are in the same
topological environment, and p(y|z, t) is the predicting result of link prediction. Middle: A sample dataset D with mark T. Right: Fit the data units given

t = 1 and t = 0. The effect of the confounder manifests as a distribution difference between p(z|t = 1) and p(z|t = 0). The mean output in the two groups
(red solid, blue solid) is different from the real mean value. If not adjusted for, this shift may result in inflated variance in the estimation of potential outcomes.

C Proof of inequality 9 and 10

Since we learn embeddings derived from GNNs, we are supposed to bound the marginal risk using the learned embeddings instead of the
original features. In Lemma 1, we use the change of variables formula to transform the features into the embedding space and obtain the upper
bound of the risk. Combining inequality 7 and equality 9, we will directly get the final result.

Proof (The proof is inspired by Lemma 1 in [33])

∫
x∈X

ℓft(x) (p1−t(x)− pwt (x)) dx =

∫
z∈Z

(
pΦ,1−t(z)− pwΦ,t(z)

)
ℓft(Ψ(z)) |JΨ(z)| dz (11)

=

∫
z∈Z

(
pΦ,1−t(z)− pwΦ,t(z)

)
ℓΦ,ht(z) |JΨ(z)| dz (12)

≤ CΦ · sup
ℓ∈L

∫
z∈Z

ℓ(z)
(
pΦ,1−t(z)− pwΦ,t(z)

)
dz. (13)

= CΦ · IPML
(
pΦ,1−t, p

w
Φ,t

)
. (14)

where |JΨ(z)| is the Jacobian determinant of the representation inverse Ψ. Equality (12) is obtained using the change of variables formula.
Inequality (13) holds based on the premise that ℓ ∈ G. Finally, (14) is following the definition of an integral probability metric (IPM).



D Additional Experiment result
D.1 Dataset information

The statistics of the datasets are listed in table D.1, which includes the number of nodes and links of the datasets. All the datasets used in this
work are publicly available.

Dataset CORA CiteSEER PUBMED FACEBOOK KIBA
# nodes 2,708 3,327 19,717 4,039 4,267
# links 5,278 4,552 44,324 88,234 1, 334, 889
# validation node pairs 1,054 910 8,864 17,646 235,371
# test node pairs 2,110 1,820 17,728 35,292 229,088

In citation networks(Cora, CiteSeer, and PubMed) [44], the nodes are published papers, and features are bag-of-word vectors extracted
from the corresponding paper. Links represent the citation relation between papers. The social network dataset (Facebook) is a social network
constructed from friends lists from Facebook [28]. The nodes are Facebook users and links indicate the friendship relation on Facebook.
And the DTI network(KIBA) [38] encompasses selectivity assays conducted on kinase proteins and their corresponding inhibitors, primarily
consisting of KIBA scores. We use the threshold 12.1 following [16] to classify the KIBA dataset.

D.2 Experimental Settings

Table 3. Parameter Settings

OGB-DDI KIBA facebook pubmed citeseer

α 2 1 1e−3 0.1 1e−3

lr 0.01 0.05 0.05 0.1 0.1
neg_rate 1 10 2 40 50
batch_size 1,000 1,024 65,536 12,000 65,536
num_np 5,000
lr_scheduler zig-zag

In this paper, we use the hyper-parameter list above to achieve the corresponding results in Table 3. Alpha is the parameter in the training
objective. lr is the learning rate. neg_rate is the rate at which we get the negative samples.Num_np is the number of links we sample to estimate
the IPM term. And we choose a zig-zag learning rate scheduler for all datasets. The "zig-zag" learning rate scheduler dynamically adjusts the
learning rate over 70 training steps, featuring warmup for the initial 50 steps with a gradual increase, followed by annealing over the next 20
steps with a linear decrease, and a subsequent constant stage, aiming to balance between quick convergence and fine-tuning.

D.3 Effect of edge marking

Since we propose the edge marking strategy aiming to solve the node automorphic problem, we conduct experiments to show to which extent
DBLP could relieve this intrinsic problem in GNNs. In Figure 5, we illustrate the result of the prediction on the test set whose marks are all 1,
i.e., the set of all the error-prone node pairs. The results show that DBLP could better handle these edges than the baselines. We noticed that in
Pubmed and KIBA datasets, all the methods get almost perfect results. This is because the number of error-prone edges is small in the test set.

D.4 Additional main comparison experimental results

This section presents supplementary results for the primary experiments. We performed experiments on each of the five datasets, comparing
our methods with baseline approaches. The following results showcase the performance based on AUC and Hit@50 as the evaluation metrics.



Figure 5. left: The result of the prediction on the test set whose marks are all 1, i.e., the set of all the error-prone node pairs. right: The result of the prediction
on the test set whose marks are all 0, i.e., the set of all the non-isomorphic node pairs

Table 4. Performance comparison of DBLP with baselines under metric Hit@50. The best performance is marked in bold and underlined, respectively.

OGB-DDI CiteSeer PubMed Facebook KIBA

Node2Vec 24.34±1.67 54.57±1.40 50.73±1.10 43.91±1.03 72.35±1.32
VGAE 23.00±1.66 54.68±3.15 41.98±0.31 51.36±0.93 47.03±0.14
SEAL 40.85±2.97 54.55±1.77 42.85±2.03 57.20±1.85 77.44±1.87
LGLP - 57.43±3.71 – 56.22±0.49 73.31±1.17
CFLP 93.07±1.14 77.01±1.92 58.16±1.40 70.47±0.77 60.94±1.56

GCN 73.70±3.99 63.38±1.73 39.20±6.47 53.89±2.14 51.71±1.91
GCN-DBLP 70.60±0.05 71.72±1.68 57.37±0.66 66.47±0.86 78.00±1.16

SAGE 86.83±3.85 61.71±2.43 54.81±2.67 45.51±3.22 52.53±2.69
SAGE-DBLP 83.12±1.04 70.84±0.19 54.91±5.69 67.69±1.01 78.42±1.59

GIN 70.91±4.66 45.35±4.40 56.15±1.33 62.06±0.43
GIN-DBLP 75.68±0.49 50.36±0.17 34.29±1.33 54.39±0.65 63.41±0.18

GAT 60.23±3.16 51.12±1.14 47.33±0.39 24.61±1.11
GAT-DBLP 55.99±0.34 66.19±1.46 30.82±2.68 41.33±1.12 46.07±1.71

JKNet 91.48±2.41 62.26±2.10 45.16±3.18 52.25±1.48 55.21±0.32
JKNet-DBLP 94.17±0.75 79.01±0.83 59.32±1.94 70.90±1.07 76.79±0.28


