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GENNDTI: Drug-Target Interaction Prediction
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Router Nodes
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Abstract—Identifying drug-target interactions (DTI) is5
crucial in drug discovery and repurposing, and in silico6
techniques for DTI predictions are becoming increasingly7
important for reducing time and cost. Most interaction-8
based DTI models rely on the guilt-by-association princi-9
ple that “similar drugs can interact with similar targets”.10
However, such methods utilize precomputed similarity ma-11
trices and cannot dynamically discover intricate correla-12
tions. Meanwhile, some methods enrich DTI networks by13
incorporating additional networks like DDI and PPI net-14
works, enriching biological signals to enhance DTI pre-15
diction. While these approaches have achieved promising16
performance in DTI prediction, such coarse-grained asso-17
ciation data do not explain the specific biological mecha-18
nisms underlying DTIs. In this work, we propose GENNDTI,19
which constructs biologically meaningful routers to repre-20
sent and integrate the salient properties of drugs and tar-21
gets. Similar drugs or targets connect to more same router22
nodes, capturing property sharing. In addition, heteroge-23
neous encoders are designed to distinguish different types24
of interactions, modeling both real and constructed interac-25
tions. This strategy enriches graph topology and enhances26
prediction efficiency as well. We evaluate the proposed27
method on benchmark datasets, demonstrating compara-28
tive performance over existing methods. We specifically29
analyze router nodes to validate their efficacy in improving30
predictions and providing biological explanations.31
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I. INTRODUCTION 34

IN DRUG development, identifying drug-target interactions 35

(DTIs) is crucial [1], [2]. DTI aims to locate compounds ca- 36

pable of binding to specific target proteins, aiding in drug virtual 37

screening and repositioning [3]. Traditional methods are often 38

time-consuming and costly, leading to the emergence of data- 39

driven DTI prediction approaches [4], [5], [6]. Docking-based 40

methods, which identify optimal binding sites through molecular 41

simulations, are limited by the precision of 3D structures and 42

slow speed [7], [8], [9], [10]. Machine learning methods use 43

specially designed features to describe drugs and targets. This in- 44

cludes combining structural and evolutionary information [11], 45

constructing kernel functions with molecular descriptors [12], 46

[13] and using techniques like SVM and ensemble learning to 47

focus on important combined features [14]. However, features 48

designed by humans can sometimes introduce biases that make 49

it difficult to accurately capture complex patterns of interaction. 50

With the rise of deep learning and biological data, many studies 51

have applied deep learning models to DTI prediction, mostly 52

using independent feature-based or network-based models [15], 53

[16], [17]. 54

Independent feature-based models focus on exploring the 55

interaction mechanism by employing separate encoders for the 56

drug and target, using inputs like protein sequences and drug 57

SMILES sequences. These models analyze the drug and target 58

features separately [9], [18], [19], [20]. Some common deep 59

learning models used for modeling sequences like CNN [18], 60

LSTM [21], and Transformer [22] have been applied. To over- 61

come the problem that sequence encoders cannot handle topo- 62

logical relationships among atoms in molecules, [23] encodes 63

the drug with graph neural networks (GNNs) to improve predic- 64

tion accuracy. The study by Wu et al. [24] leverages graph trans- 65

former and cross-attention mechanisms to augment the model’s 66

capabilities. However, a major limitation of these models is that 67

they find it hard to capture intricate correlations between drugs 68

and targets in DTI prediction [25]. 69

Modeling drug-target interactions as networks is another strat- 70

egy [26], [27], [28]. These networks are built on the “guilt by 71

association” assumption that similar drugs may act on similar 72
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targets. Hao et al. [29] proposed dual-network integrated logis-73

tic matrix factorization to predict DTI by incorporating drug74

and target profiles. Eslami et al. [30] constructed drug-protein75

networks using drug-drug and protein-protein similarities and76

applied graph labeling and deep neural networks to learn com-77

plex interaction patterns from embedded graphs. In Shang et al.’s78

study [31], MEDTI employs multiple similarity networks for79

compact drug and target feature vectors, enhancing multilayer80

network representation learning. They include regularization81

constraints to improve prediction accuracy. Fu et al. [32] build82

a multi-view heterogeneous network (MVHN) by integrating83

similarity networks with a biomedical bipartite network. This84

integration enhances the quality of initial node embeddings,85

thereby improving prediction efficiency. However, these meth-86

ods rely on the accuracy and reliability of pre-defined similarity87

measurements, which can hardly reflect the intricate correlations88

between drugs and targets and cannot dynamically learn relevant89

representations to support prediction. In Chu et al.’s work [33],90

the authors present HGRL-DTA, a model that integrates inde-91

pendent features and known DTA network data as coarse- and92

fine-level information to predict drug-target affinity. However,93

it utilizes a fixed message passing strategy to learn two types of94

information. Some methods enhance drug-target interaction pre-95

diction models by incorporating additional drug-drug interaction96

(DDI) and protein-protein interaction (PPI) networks, which97

augment the relational data between drugs and targets [34], [35].98

Despite these improvements, these models often fail to provide99

detailed insights into the specific interactions.100

To solve these issues, we propose a new strategy that adds101

special router nodes representing attributes to the existing net-102

work. These router nodes reflect the basic properties of drugs103

and targets. Drugs with similar attributes are connected to the104

same router drug nodes, and targets with similar attributes are105

connected to the same router target nodes. When different drugs106

are linked to the same router drug node, it means these drugs107

all have that particular characteristic. The same applies to Tar-108

gets and Router Targets. Therefore, the router nodes and their109

connections encode fine-grained similarity information between110

drugs and targets based on their attributes. During graph neural111

network training, the router nodes provide channels for dynam-112

ically propagating semantic messages between similar drugs.113

This helps the network learn better and make good predictions114

based on the similarities in features. The study BridgeDPI [36]115

introduces a similar concept where nodes help to make con-116

nections. However, their nodes are virtual ones that link drugs117

and targets, whereas our router nodes represent real biological118

features of the drugs or targets. The overall framework of our119

model is illustrated in Fig. 1. There are four kinds of entities120

and three types of links. RD stands for router drugs, and RT for121

router targets. The straight lines between drugs and targets that122

are known to interact are called real interactions. The lines that123

connect router drugs to drugs or router targets to targets are called124

sub-interactions. These sub-interactions help our model better125

share and understand information, which improves predictions126

about which drugs might affect which targets. The diagram127

shows how our router nodes create new paths for information,128

Fig. 1. Overview of our model. The graph contains four types of nodes:
drugs, targets, router drugs, and router targets; two types of edges:
(1) real interaction between pairs of drugs and targets, (2) sub-
interaction between pairs of drugs or targets. The solid line connects
the real interactions, and the dotted lines connect the constructed sub-
interactions. In the graph, we can see that the introduction of router
nodes provides a path from D1 to T3, D1 to T4.

like linking Drug 1 to Target 3 and Drug 1 to Target 4 through 129

D1 → RD1 → D3 → T4 and D1 → RD2 → D4 → T3. 130

In this work, we propose a novel DTI prediction model named 131

Graph Enhanced Neural Network for Drug Target Interaction 132

Prediction (GENNDTI). This model uses special router nodes 133

that represent the characteristics of drugs and targets, helping 134

to share detailed information effectively. These router nodes are 135

designed to capture and use existing knowledge to highlight 136

similarities between drugs and targets. We use different encoders 137

to process various types of interactions and enhance the drug and 138

target descriptions with molecular fingerprints and amino acid 139

details. The model updates the drug and target information by 140

combining embedding from diverse sources to make accurate 141

predictions. Our approach adds new types of nodes and ways 142

of connecting them in original drug-target interaction networks. 143

By integrating router nodes and various connections, the model 144

clearly distinguishes between different kinds of interactions and 145

provides easy-to-understand explanations. 146

The main contributions of this paper are listed below: 147
� We introduce GENNDTI, an innovative model that inte- 148

grates router nodes representing the attributes of drugs and 149

targets into drug-target interaction networks, enhancing 150

the graph learning process. 151
� We use distinct graph neural encoders to learn various 152

types of connections within the network. 153
� We show the interpretability of GENNDTI through case 154

studies, showing how the router nodes visually capture and 155

illustrate semantic similarities. 156

II. METHODS 157

In this section, we first present the problem definition, 158

then give a detailed description of the GENNDTI architec- 159

ture. Our proposed framework includes three main parts: 160

(1) A graph enhancement module that involves router nodes and 161

sub-interactions, adding depth and context to the graph structure; 162

(2) a bi-Encoder Representation fusion module that combines 163

the embeddings from different encoders for a comprehensive 164

representation of drugs and targets; (3) an interaction prediction 165
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Fig. 2. GENNDTI framework: This framework takes drug-target pairs and existing knowledge about drug proterties and protein characteristics as
input to predict how likely different drug-target pairs are to interact. It includes three main parts: (1) A graph enhancement module that uses router
nodes and builds additional interactions to improve the network’s structure; (2) A Bi-Encoder Representation Fusion module that merges detailed
data from various sources, covering both real interactions and sub-interactions; (3) An interaction prediction module that uses the updated node
representation to obtain the final drug-target interaction prediction score.

module that uses the updated node representation to obtain the166

final drug-target interaction prediction score. The framework of167

GENNDTI is illustrated in Fig. 2.168

A. Problem Statement169

Let us define D as the set of all drugs and T as the set of all170

targets. Given these definitions, we can represent the dataset and171

its associated constructs as follows:172
� The dataset X comprises pairs (yij , rij), where yij =173

{(di, tj)|di ∈ D, tj ∈ T } represents a drug-target pair,174

and rij denotes the binary label indicating the presence175

(1) or absence (0) of an interaction between drug di and176

target tj .177
� We can denote the set of known drug-target interac-178

tions (DTIs) as S = {(Yij , rij)|(Yij , rij) ∈ X , rij = 1},179

which includes only those pairs exhibiting interactions.180
� The interaction graph G = {V, E} consists of vertices181

V = D ∪ T , representing drugs and targets, and edges E ,182

denoting interactions from S between them.183

DTI Prediction Problem: The objective of the Drug-Target184

Interaction (DTI) problem is to develop a predictive model185

F(Yij ,G) that aims to accurately predict the label rij between186

drug i and target j.187

B. Graph Enhancement Module 188

The communication capacity of a graph neural network refers 189

to how well it can exchange and spread information between its 190

nodes. In our model, we enhance this capacity by incorporating 191

additional knowledge into the graph structure. Specifically, we 192

add router nodes between similar node pairs to facilitate message 193

passing. These router nodes act like high-capacity channels 194

that connect potentially interacting drugs and target candidates 195

with shared characteristics. They are designed based on the 196

descriptive chemical features of drugs and targets, enabling them 197

to link related entities and enhance the transmission of relevant 198

information across the network. 199

Formally, the prior knowledge Kd = {kd1, kd2, kd3 · ··} and 200

Kt = {kt1, kt2, kt3 · ··} are the pre-known properties in drug 201

domain and target domain, respectively. The set of router nodes 202

is denoted by B and the corresponding edge set is denoted by E . 203

We will add elements to the two sets by the following process. 204

In the context of drugs, we introduce router nodes represented 205

as bdi to integrate prior knowledge denoted by kdi forming a 206

set B. Each router node in this collection symbolizes a specific 207

physicochemical characteristic. We then add edges to the edge 208

set P , which represent the drugs that possess these characteris- 209

tics. The index i is used to count the various prior knowledge 210

features contained in Kd. A similar expansion is applied to 211
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the target domain, with new elements added to both B and P .212

Consequently, the expanded graph is structured as follows:213

J = {V ∪ B, E ∪ P} (1)

The objective of DTI prediction comes to develop a model214

F(Yij ,J ) that can predict the likelihood of interaction,215

represented as rij between given drug-target pairs.216

In this discussion, we explore the impact of adding extra217

router nodes and edges on the communication capabilities within218

drug-target interaction networks. The diameter of a graph, de-219

noted as D(G), represents the longest shortest path between any220

two nodes in the graph G. Formally, it is the greatest geodesic221

distance found among any pair of vertices (u, v) ∈ V (G) and is222

calculated as the shortest path length d(u, v) between them (2).223

The diameter essentially measures how far apart the furthest224

nodes are within the network, considering the shortest path225

connecting them. A disconnected graph has an infinite diameter,226

indicating a lack of path connectivity between some node pairs.227

Conversely, a smaller diameter suggests a more interconnected228

network, which is advantageous for information flow in Graph229

Neural Networks (GNNs), enabling more efficient and rapid230

information propagation [37].231

D(G) = max
u,v∈V (G)

d(u, v) (2)

In the graph enhancement module, we add router nodes that232

connect potentially isolated sections of drug-target interaction233

(DTI) networks, which can change the network’s diameter234

from infinite to finite. For instance, router nodes that repre-235

sent common protein functions, like ATP-binding, link separate236

target entities together. This helps in spreading information237

between these entities, thereby boosting the network’s ability to238

communicate effectively.239

C. Bi-Encoder Representation Fusion Module240

GENNDTI aims to improve the communication efficiency of241

the graph network and the prediction accuracy of the model242

through special routing nodes and additional connections. The243

key question we face is how to design the network so that new244

sub-interaction links can convey information as efficiently and245

accurately as existing interaction links. Therefore, in this study,246

we introduce two distinct encoders: one for modeling the original247

network links (referred to as the cross encoder) and another for248

the newly added network links (referred to as the inner encoder).249

This distinction allows us to clearly differentiate between the250

effects of these two types of interactions, as treating them equally251

would be inappropriate.252

To state how our mechanism works, we will first introduce the253

general message-passing mechanism [38]. Modern graph neural254

networks follow a neighborhood aggregation strategy for rep-255

resentation learning on graphs. Specifically, the representation256

of a node is iteratively updated by aggregating representations257

of its neighboring nodes. After k iterations, the representation258

of a node captures topological information within its k-hop259

neighborhood, which is formulated as follows:260

m(k)
v = AGGR(e(k−1)

p : p ∈ N (v)) (3)

e(k)v = COMBINE(e(k−1)
v ,m(k)

v ) (4)

Here, m(k)
v is the message passing to node v obtained by ag- 261

gregating the representations of its neighbors, and e
(k)
v is the 262

new representation of node v. N (v) stands for the group of 263

neighboring nodes around node v. In the context of drug-target 264

interactions (DTI), nodes v and p could be drugs, targets, or 265

the special router nodes we’ve added in our model. We use v 266

and p as general terms for any nodes in the DTI network. The 267

aggregation function AGGR(·) generates messages by aggre- 268

gating representations of neighboring nodes and the combination 269

function COMBINE(·) fuses the aggregated messages with 270

the node’s own representation. Next, we’ll explain how we 271

design different message construction methods to reflect various 272

interaction sources. 273

1) Within Drug or Target Domain: To model the interactions 274

between drugs/targets and their attribute routers, we adopt a mes- 275

sage construction scheme following the graph convolutional net- 276

work. In GCN, neighborhood information is aggregated through 277

Laplacian regularization. The message passed from node p to 278

node v is described as: 279

m(k)
vp =

1√
|N (p)||N (v)|

(W(k)h(k)
p ) (5)

Here, W (k−1)is a trainable weight matrix. After computing 280

messages from all connected nodes, we add all the messages to 281

form the final message for fusion. The final node v is expressed 282

as: 283

m(k)
v =

∑

p∈N (v)∩(B∪D)

m(k−1)
vp (6)

This process allows for increased interaction between similar 284

drugs or targets, thereby enhancing their embeddings. 285

2) Cross Drug and Target Interaction: This section aims to 286

achieve two core goals by modeling real interactions: (1) mak- 287

ing the representation of the interacting drug and target entity 288

pairs similar; (2) making the embedding representations of the 289

associated routers of the interacting drug and target consistent. 290

The core idea behind this goal is that prediction of interactions 291

between drugs and targets will be easier if their representations 292

are highly similar, thus routers should have similar mathe- 293

matical representations if they are related. We adopted two 294

different methods in this module: Bi-interacion [39] and graph 295

convolutional network (GCN). 296

In Bi-interacion, we model the similarity between two nodes 297

by taking the element-wise product of the two node embeddings. 298

Specifically, for any two node pairs (v, p) in the drug field, the 299

Bi-interaction message is defined as: 300

m(k−1)
vp = ev

(k−1) � ep
(k−1) (7)

Here � represents the element-wise product operation, which 301

can encode the similarity between the embedding vectors of 302

nodes v and p. Then, by aggregating the message results between 303

v and all its target neighbors, the final message representation 304

m
(k)
v is obtained. 305

m(k)
v =

∑

p∈N (v)∩(T ∪Bt)

ev
(k−1) � ep

(k−1) (8)
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where Bt denotes the set of p’s (p ∈ T ) router neighbors. This306

enables the drug node to obtain information from routers associ-307

ated with its target nodes. The same method is used for creating308

messages for target nodes as well.309

To improve the accuracy of prediction when data is sparse, we310

adopt multi-hop propagation and neighbor information aggrega-311

tion strategies to model the real interactions between drug and312

targets to make up for the lack of information, thereby obtaining313

a richer node representation. We obtain the final information of314

drug node v by aggregating the message passing results between315

v and all its target neighbors p, whose expression is:316

m(k)
v =

∑

p∈N (v)∩(T ∪Bt)

1√
|N (p)||N (v)|

(W(k−1)e(k−1)
p ) (9)

where N (v) and N (p) represent the neighboring nodes of (v)317

and (p), respectively.318

3) Molecular Representation: To enhance the representation319

of drug and protein target sequences, we use the RDKit package320

methods of smiles2morgan and target2aac [40]. The former is321

used to convert drug information into a numerical represen-322

tation, while the latter encodes the protein target information323

into a numerical representation by calculating the composition324

of amino acid (AA) residues, dipeptides, and tripeptides for325

a given protein sequence. Then, we use principal component326

analysis (PCA) to reduce the dimensionality of both numerical327

representations of the drug and protein target numerical repre-328

sentations from 8420 dimensions to lower dimensions, resulting329

in a revised representation that preserves important information330

while eliminating redundancy.331

4) Information Fusion: To fuse information effectively, we332

use the function COMBINE()̇ that transforms data from a333

3-dimensional space (R3×d) into a 1-dimensional space (Rd).334

Previous studies [41] have shown that gated recurrent units335

(GRU) [42], a recurrent neural network model, are well-suited336

for consolidating such information. Specifically, messages from337

sub-interactions and messages from true interactions, along338

with the node embeddings, are fed as inputs into the GRU.339

The final output from the GRU gives us the combined node340

embeddings, which are a rich, integrated representation of the341

node’s information.342

e = GRU(CONCAT (mvnode,mvsub,mvreal) (10)

D. Interaction Prediction343

The fused node representations generated in the previous344

module are fed into a pooling layer to obtain the updated embed-345

dings for drugs or targets, which contain the router information346

needed for link prediction. We employ a summation operation347

to obtain the final representations of drug and target nodes.348

ed =
∑

i∈N (d)∪d
ei (11)

et =
∑

j∈N (t)∪t
ej (12)

TABLE I
STATISTICS OF TWO DTI DATASETS

The probability of interaction between drug ed and target et is 349

calculated by the following formula: 350

r̂i,j = φ(f(ed, et)) (13)

where f is the inner product function and φ is the sigmoid 351

function that limits the score to the interval between 0 and 1. 352

We set 0.5 as a threshold to convert the output values into binary 353

labels indicating whether there is an interaction between the 354

candidate drug target pairs. 355

E. Optimization Objective and Loss Function 356

The optimization objective of GENNDTI consists of two 357

parts, a base loss function and an L2 regularization term. The 358

base loss function uses binary cross-entropy to quantify the 359

difference between the true labels and the predicted labels, which 360

can be expressed as: 361

L(r̂i,j(θ), ri,j) = − ri,j · log(r̂i,j(θ)) + (1− ri,j)·
log(1− r̂i,j(θ)) (14)

where ri,j is the true label for sample i and sample j, and r̂i,j(θ) 362

is the predicted label under parameters θ. To prevent overfitting, 363

an L2 regularization term is introduced, expressed specifically 364

as: 365

R = λ(‖θ‖2) (15)

The final optimization goal of GENNDTI is represented as: 366

L(θ) =
1

N

N∑

n=1

L(r̂i,j(θ), ri,j) +R (16)

θ∗ = argmin
θ

L(θ) (17)

N is the total number of samples, θ represents all the parameters, 367

and θ∗ are the final parameters after optimization. 368

III. EXPERIMENTAL RESULTS 369

In this section, we first describe the experimental setup. Then 370

we show the performance of GENNDTI by comparing it with 371

the state-of-the-art models, followed by a comparative study 372

and an ablation study to understand the effectiveness of each 373

component in GENNDTI. Finally, we analyse how the routers 374

impact DTI prediction. 375

A. Data Preparation 376

1) Datasets of DTI Pairs: In this study, we use the bench- 377

mark datasets Davis [43] and KIBA [44] to evaluate the model 378

performance. The statistic of the two datasets are given in Table I. 379

Davis: Davis contains binding affinities between 68 drugs 380

and 379 proteins, constituting 25,772 DTI pairs. It includes 381
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TABLE II
DESCRIPTORS OF THE ATTRIBUTES OF DRUGS AND TARGETS (# MEANS

THE NUMBER OF)

the results of selectivity assays for the kinase protein family382

and their inhibitors, along with their dissociation constant (Kd)383

values. We transform Kd into − log10 (
Kd

1e9 ) for data splitting384

in logspace. Following the experimental setting of [45], we385

divide the Davis dataset by the threshold 5.0 to construct a386

binary classification database with a connectivity of 28.8%. The387

instances that surpass the value of 5.0 are considered positive388

samples, while those below 5.0 are regarded as negative samples.389

KIBA: KIBA contains binding affinities between 2,068 drugs390

and 229 proteins, together constituting 117,657 drug-target391

interaction pairs. The KIBA dataset encompasses selectivity392

assays conducted on kinase proteins and their corresponding393

inhibitors. The KIBA scores are calculated from experimental394

data, specificallyKi,Kd, and IC50 values, gathered from trusted395

sources. We used a threshold of 12.1 following [12] for data396

partitioning of the processed KIBA dataset, which formed a397

database with a connectivity of 4.76%. The instances that surpass398

the value of 12.1 are considered positive samples, while those399

below 12.1 are regarded as negative samples.400

The connectivity is defined as401

connectivity =
existing connections

number of drugs × number of targets
(18)

2) Prior Knowledge of Molecular Attribtues: We use prior402

information about the characteristics of drugs and targets to403

create “router nodes,” each representing a specific character-404

istic. For the drugs, we select a set of descriptors from the405

RDKit.Chem.Descriptors module [46]. This module is a Python406

package that provides 208 descriptors, mainly consisting of407

physicochemical properties and fractions of substructures in408

the drugs. For the targets, we selected some protein descriptors409

from the Peptides package [47], which is a Python package that410

contains physicochemical properties, indices, and descriptors411

for amino acid sequences. The descriptors that we have chosen412

are shown in Table II. When picking router nodes, we focus on413

attributes that can be turned into whole numbers or grouped414

into specific categories. This strategy simplifies the ways to415

enhance the probability of establishing connections between416

diverse drugs and targets to the same router node.417

B. Experimental Setting418

1) Metrics: We evaluate the model using commonly used419

performance metrics for binary classification, including AUC420

(Area Under the Curve), AUPR (Area Under the Precision-421

Recall Curve), accuracy, precision, and recall.422

2) Implementation Details: We implemented our model with 423

Pytorch 1.6.0 and PyTorch Geometric 1.4.3, and conducted the 424

training and testing phases on two NVIDIA 2080 Ti GPUs. 425

We obtained the datasets from the Therapeutics Data Commons 426

(TDC) [48]. We divided each dataset into training, validation, 427

and test sets in a 7:1:2 ratio, respectively. The validation set 428

facilitated the determination of hyperparameter configurations, 429

whereas the test set served for model performance evaluation. To 430

ensure the reliability of our results, we conducted 5 independent 431

trials for each experiment. We considered the mean score across 432

these 5 trials as the final result. The hyperparameters selected 433

for our model are detailed in Table V. 434

3) Baselines: We compared our model with several re- 435

cently proposed baseline methods for DTI prediction, which in- 436

clude GNN-CPI [49], GNN-PT [50], DeepEmbedding-DTI [51], 437

GraphDTA [23] (Which was originally designed for the re- 438

gression problem of predicting binding affinity, but can be 439

converted to a binary classifier by adding a sigmoid function 440

to the output layer), DeepConv-DTI [16], TransformerCPI [22], 441

MolTrans [2], GCN [52], BridgeDPI [36]and HGRL-DTA [33]. 442

We adopt the same data partition as [45]. For BridgeDPI, We 443

reproduce the article with the parameters the original paper 444

provides [36]. 445

C. The Prediction Ability 446

The experimental results in Tables III and IV indicate that our 447

proposed GENNDTI model achieves competitive performance 448

in the majority of cases, which demonstrates the effectiveness 449

of our model. 450

We achieved noteworthy results on Davis, where our model 451

has improved precision, recall, AUC, and AUPR by 1.7%, 452

2.6%, 0.8%, and 0.3% compared to the best baseline model. 453

Simultaneously, our model also achieved competitive results on 454

KIBA. As previously mentioned, the models we compared are 455

of two types: those based on independent features (the first seven 456

models) and those based on interactions (the last four). In From 457

the data in Tables III and IV, we see that models focusing on 458

interactions worked better on the dense Davis dataset. However, 459

for the sparser KIBA dataset, there wasn’t a big difference in how 460

the two types of models performed. Interaction-based methods 461

leverage message passing between neighboring nodes, while 462

independent feature-based models predict based on separate 463

drug-target pairs. This means interaction-based models do well 464

when the network of connections is strong and close. The Davis 465

dataset, which is well-connected, allows for a lot of information 466

sharing, helping our model perform well. However, the KIBA 467

dataset stayed sparse, even after attempts to enhance it, lead- 468

ing to less message sharing and only a slight improvement in 469

predictions. 470

Among all baseline models compared, GraphDTA, HGRL- 471

DTA and MolTrans showed better performance. In particu- 472

lar, GraphDTA and HGRL-DTA adopt graph neural networks 473

(GNN) to model molecular graphs, which demonstrates the 474

effectiveness of using GNN to characterize molecular struc- 475

tures to improve drug target affinity prediction. The GENNDTI 476

model increases the density of the network by incorporating 477

prior knowledge and promoting information exchange between 478
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TABLE III
PERFORMANCE COMPARISON OF GENNDTI WITH BASELINES IN AUC AND AUPR ON DAVIS (STD)

TABLE IV
PERFORMANCE COMPARISON OF GENNDTI WITH BASELINES IN AUC AND AUPR ON KIBA (STD)

similar molecules. This enhances the model’s ability to under-479

stand molecular properties by strengthening the message passing480

mechanism, thereby improving the accuracy of DTI predictions.481

D. Model Analysis482

In this section, we will look into four key questions: (1) Should483

we use different methods to model the real interaction and sub-484

interactions (2) Do the sub-interactions positively affect the final485

predictions? (3) How important is each component of the model?486

(4) What’s the best way to combine various types of information?487

1) Comparative Study of Different Combinations of Interac-488

tions: On the choice of two interaction modes, we referred to489

similar work [41]. Specifically, we use (real-interaction, sub-490

interaction) pairs to represent different combined versions of491

model selection. For example, (Bi-interaction, GCN) indicates492

that Bi-interaction and GCN are used to model real interactions 493

and sub-interactions, respectively. 494

We use Bi-interaction and GCN to simulate real interactions 495

and MLP [53] and GCN to simulate sub-interactions, respec- 496

tively. By pairing the results of these two interaction modelings, 497

we tested on the Davis and KIBA datasets, and the experimental 498

results are shown in Fig. 3. 499

Fig. 3 shows that the Graph Convolutional Network (GCN) 500

is better than the Multi-Layer Perceptron (MLP) at modeling 501

sub-interactions. This finding indicates that using prior knowl- 502

edge to build sub-interactions is more effectively enhanced 503

by first merging information and then combining this merged 504

information with other relevant data. Therefore, GCN is more 505

appropriate for these tasks than MLP. 506

For real interaction, the effectiveness varies with the dataset’s 507

connectivity. For densely connected datasets like Davis, the 508

Bi-interaction method outperforms GCN, suggesting it’s better 509
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Fig. 3. The comparison of using different combinations of interaction
and neural network models.

TABLE V
HYPERPARAMETERS OF GENNDTI

TABLE VI
THE COMPARISON WHEN INCLUDING DIFFERENT ROUTER NODES(STD)

suited for dense networks. However, for sparser networks like510

KIBA, GCN is more effective than Bi-interaction. This differ-511

ence implies that sparser networks benefit from more rounds512

of information gathering to improve outcomes, whereas dense513

networks might need only one. Too many rounds of combining514

information in a dense network could result in over-smoothing.515

2) Ablation Study of Routers: To evaluate the impact of in-516

cluding routers and sub-interactions in our model, we carried out517

an ablation study. This study involved using different combina-518

tions to encode the real interactions and the sub-interactions519

within the model. Specifically, for the Davis dataset, we em-520

ployed the (Bi-interaction and GCN) combination to encode real521

interactions and sub-interactions and for the KIBA dataset, we522

used “GCN and GCN,” in line with our prior discussions.523

We conducted experiments on two datasets under the follow-524

ing four settings: (1) without using any routers, (2) using only525

drug routers, (3) using only target routers, and (4) using both526

drug and target routers. The results are in Table VI.527

The results clearly indicate that adding router nodes makes528

the model work better. Out of all the setups we tested, the one529

with both drug and target routers gave the best results. This530

TABLE VII
ABLATION STUDY OF DIFFERENT MODULES(STD)

TABLE VIII
ABLATION STUDY OF FUSION METHODS(STD)

shows that the model really benefits from having a complete set 531

of routers. On the other side, not using any routers at all gave the 532

worst outcomes. Also, just including one type of router, either for 533

drugs or targets, still helped improve the model’s performance, 534

but the extent of improvement varied based on the setup. 535

The Davis dataset has more target router nodes than drug ones, 536

enhancing the model more with target information. Conversely, 537

the KIBA dataset has more drug router nodes, so drug informa- 538

tion boosts the model significantly. Overall, the model performs 539

best when it includes both types of information. 540

3) Ablation Study of Different Modules: To check how ef- 541

fective the three modules in the Drug encoder and Target en- 542

coder are, we run tests removing each module one by one. We 543

look at how the model performed without the cross-interaction 544

module, without the sub-interaction module, without the fin- 545

gerprint module, and compared these with the performance of 546

the full model, focusing on the AUC and Accuracy metrics. 547

Experimental results show that the complete model, with all 548

modules included, works better than any version with a module 549

removed. This means each module adds value to the model. 550

Removing the cross-interaction module resulted in the most 551

significant performance decline, showing its vital importance in 552

understanding the interactions between known drugs and targets, 553

which is key for accurately predicting drug-target interactions 554

(DTI). The results are in Table VII. 555

4) Ablation Study of Fusion Method: The fusion module in 556

GENNDTI aggregates messages from drug encoders and target 557

encoders to obtain fused node representations of drugs and tar- 558

gets. We evaluated three information fusion methods: SUM [54], 559

MLP, and GRU [55]. SUM uses element-wise addition across 560

the vectors to fuse their information. MLP employs a Multi- 561

layer Perceptron to learn nonlinear combinations of vectors, 562

which involves processing through linear transformations and 563

nonlinear activation layers to get a node representation that 564

integrates various information features. Lastly, GRU utilizes a 565

gated mechanism to adaptively fuse information from different 566

sources. The experimental results, as shown in Table VIII, 567

indicate that the GRU is the most effective fusion method of 568

the three types of information. It surpasses other methods by 569
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Fig. 4. The Venn diagrams show the proportion of predicted node pairs under the With Router condition and without Router condition.
Figure a) shows the distribution of correctly predicted interacting node pairs (true positives) under both settings. Figure b) depicts the distribution of
correctly predicted non-interacting node pairs (true negatives) under the two scenarios.

Fig. 5. Case study results about the similarity between property embeddings of router drugs and targets. (a) Heatmap that visualises the
correlations (similarities) between drug and target properties as before training, (b) Heatmap of the correlations and target properties after training.
(c) The distribution of the property similarities before training. (d) The distribution of the property similarities after training.

providing more flexibility compared to SUM’s simple addition570

and more efficiency than MLP’s static layers.571

E. The Impact of Routers572

In this section, we aim to explore the function of router573

nodes in the model’s predictions and provide their biological574

interpretation.575

1) Improvements to Graph Topology: We conducted a visual576

analysis of the prediction results on the test set of the KIBA577

dataset under two different scenarios, i.e. with and without router578

nodes. The results are presented in Fig. 4. In Fig. 4(a), the 579

prediction outcomes for true positive node pairs are shown, and 580

in Fig. 4(b), the prediction outcomes for true negative node pairs 581

are illustrated in Venn diagrams. In the context of the analysis, A 582

and C represent the sets of node pairs that can be predicted only 583

with router nodes and only without router nodes, respectively. B 584

represents the sets of node pairs that can be predicted accurately 585

under both settings. We can see that the introduction of routers 586

leads to an increase in the count of correctly predicted node pairs. 587

We isolated node pairs accurately predicted only by the model 588

incorporating routers and examined the degrees of these nodes in 589
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the bipartite graph derived from the original dataset. The degrees590

were lower compared to the average degree of the entire network.591

This observation indicates router nodes mitigate insufficient592

connectivity for certain challenging nodes, thereby enhancing593

the graph’s learning capacity. For instance, in the KIBA dataset594

graph, the average target node degree is 108.035. However, for595

target nodes from the original graph solely predictable with596

router augmentation, the average degree is just 16.57. This597

discrepancy highlights the presence of relatively disconnected598

nodes in the graph. Augmenting their connections via router599

nodes improves predictive performance by alleviating such in-600

sufficient connectivity. As stated in [56], graph sparsity impedes601

representational power. Correspondingly, our method enhances602

expressivity by increasing graph density through introduced603

router nodes, aligning with referenced conclusions.604

2) Interpretability of Router Nodes: To illustrate the repre-605

sentation learned by router nodes, we extract router embeddings606

before and after training. We generated heatmaps to visualize607

the cosine similarities between router drugs and router target608

embeddings, as well as the distribution of these similarities, and609

the final results are shown in Fig. 5.610

Our approach incorporates router nodes based on prior knowl-611

edge to serve as intermediaries between drug and target en-612

tities. This enables elucidating the relevance of specific at-613

tributes in predicting drug-target interactions. We conducted614

a case study on the KIBA dataset to validate the efficacy of615

router nodes. In Fig. 5, target router embeddings are plotted616

horizontally while drug routers are vertically in the heatmaps.617

Initially, the router embeddings are randomly initialized before618

training, yielding correlations centered around 0 as depicted619

in Fig. 5(c). This indicates the absence of discernible patterns620

between the untrained routers. However, after training, the cor-621

relation distribution undergoes notable changes as shown in622

Fig. 5(d). Certain router pairs exhibit highly positive correlations623

approaching 1, implying strong relevance. Conversely, some624

pairs display highly negative correlations near −0.7, indicating625

opposing traits. Nonetheless, most router pairs lack significant626

correlations. These observations demonstrate our approach suc-627

cessfully learns salient property relationships of router nodes.628

By training, the router correlations become more reflective of629

intrinsic drug-target interaction patterns.630

As shown in Fig. 5(b), router drugs within the 163–168631

range exhibit strong correlation with numerous target routers.632

These routers represent high quantities of saturated heterocycles633

in the molecules. This highlights the salient role of specific634

heterocycles in drug discovery, as their presence or absence635

remarkably affects interaction with certain targets. Prior studies636

have demonstrated hydrogen-bond acceptors of heteroatoms can637

bind proteins [57] and marketed drugs with high affinity often638

contain ring structures [57], corroborating our observation. In639

contrast, drugs with 150–153 router embeddings show strongly640

negative correlations, potentially hindering interactions. These641

routers represent molecules with many (≥10) rotatable bonds,642

aligning with Lipinski’s Rule of Five that excessive flexibility643

from rotatable bonds may reduce protein binding [58].644

For knowledge validation, routers and sub-interactions can645

be constructed from prior domain expertise to examine the in-646

fluence of specific molecular subcomponents on the interaction647

mechanism. Hence, this analysis signifies GENNDTI’s potential 648

as an invaluable tool for knowledge discovery to drug-target 649

interactions. 650

IV. CONCLUSION AND DISCUSSION 651

DTI prediction is critical for drug discovery and repositioning. 652

Most interaction-based models rely on the guilt-by-association 653

principle. However, they cannot dynamically extract complex 654

correlations or reflect specific causal factors underlying in- 655

teractions. In our paper, we introduce a new model called 656

GENNDTI, which introduces router nodes based on biolog- 657

ical knowledge to construct paths for message passing and 658

uses diverse encoders to distinguish interaction types. These 659

routers act as interpretable passageways that propagate infor- 660

mative signals between drug and target nodes. By learning on 661

the enhanced graph, our approach not only accurately predicts 662

Drug-Target interactions (DTIs) but also provides insights into 663

the underlying mechanisms. We demonstrate GENNDTI’s supe- 664

riority over existing approaches on several benchmark datasets. 665

We also evaluated the strengths and weaknesses of different 666

types of methods on diverse connectivity datasets. Furthermore, 667

we validated the contribution of router nodes in enhancing 668

model performance and biological interpretability. In future 669

work, we plan to incorporate more biological information using 670

hypergraph neural networks or other techniques to to further 671

explore the DTI response mechanism. 672
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